

CLEAR IJRMST Volume-04 Issue-08 Jul-Dec 2014

 Online-ISSN: 2249 -3506

 Print-ISSN: 2249 -3492

 www.thaavan.org

Semi Trusted Proxy To Secure Public Auditing With Network Coding Based

Storage In Multi Storage Cloud Architecture

1

Semi Trusted Proxy To Secure Public Auditing With Network Coding

Based Storage In Multi Storage Cloud Architecture

K.Gnanathangavelu
1
, S.Pradeep

2

1
Assistant Professor, Department of Information Technology, Arignar Anna Institute of Science and

Technology, Chennai, Tamil Nadu, India. kgvelumtech@hotmail.com
2
Assistant Professor, Department of Information Technology,Pannai College of Engineering and

Technology , Sivagangai, Tamil Nadu, India. csspradeep@gmail.com

Abstract

Cloud computing setting in which probabilistic querying of outsourced data is a service provider. The data

is to be revealed only to trusted users, not to the service provider or anyone else. Outsourcing offers the

data owner scalability and a low initial investment. The need for privacy may be due to the data being

sensitive or otherwise confidential. Security challenges and Data Loses are still among the biggest problem

when considering the adoption of cloud services. This triggered a lot of research activities, resulting in a

quantity of proposals targeting the various cloud security threats and repair Storage node but doesn‟t

provide efficient security mechanism and fault isolation process. Now this proposed system will overcome

for all existing problems. New public auditing scheme for regenerating-code-based cloud storage, to solve

the regeneration problem of failed authenticators in the absence of data owners; to introduce a proxy, which

is privileged to regenerate the authenticators, into the traditional public auditing system model. Moreover,

to design a novel public verifiable authenticator is generated by a couple of keys and can be regenerated

using partial keys. Thus, our scheme can completely release data owners from online burden. In addition, to

randomize the encode coefficients with a pseudorandom function to preserve data privacy. Our scheme is

highly efficient and can be feasibly integrated into the regenerating-code-based cloud storage.

Keywords—Cloud Stroage, Regenerating Codes, Public Audit, Proxy.

I. INTRODUCTION

Cloud computing is the delivery

of computing as a service rather than a product,

whereby shared resources, software, and

information are provided to computers and other

devices as a utility over a network .Cloud

computing is Internet-based computing, whereby

shared servers provide resources, software, and

data to computers and other devices on demand,

as with the electricity grid. The term “cloud”, to

have its origins in network diagrams that

represented the internet, or various parts of it, as

schematic clouds. Cloud computing refers to the

many different types of services and applications

being delivered in the internet cloud, and the fact

that, in many cases, the devices used to access

these services and applications do not require any

special applications.Cloud computing is a

technology that uses the internet and central

remote servers to maintain data and applications.

Cloud computing allows consumers and

businesses to use applications without

installation and access their personal files at any

computer with internet access. This technology

allows for much more inefficient computing by

centralizing storage, memory, processing and

bandwidth.A simple example of cloud computing

is Yahoo email, Gmail, or Hotmail etc. You

don‟t need software or a server to use them. All a

consumer would need is just an internet

connection and you can start sending emails. The

server and email management software is all on

the cloud (internet) and is totally managed by the

cloud service provider Yahoo, Google etc. The

consumer gets to use the software alone and

enjoy the benefits. The analogy is, 'If you need

milk, would you buy a cow?' All the users or

consumers need is to get the benefits of using the

software or hardware of the computer like

mailto:kgvelumtech@hotmail.com
http://en.wikipedia.org/wiki/Service_(economics)
http://en.wikipedia.org/wiki/Product_(business)
http://en.wikipedia.org/wiki/Utility_computing
http://en.wikipedia.org/wiki/Computer_network

CLEAR IJRMST Volume-04 Issue-08 Jul-Dec 2014

 Online-ISSN: 2249 -3506

 Print-ISSN: 2249 -3492

 www.thaavan.org

Semi Trusted Proxy To Secure Public Auditing With Network Coding Based

Storage In Multi Storage Cloud Architecture

2

sending emails etc. Just to get this benefit (milk)

why should a consumer buy a (cow) software

/hardware.

Cloud computer works by hosting your

information on computers „out there‟ „in the

cloud‟. The cloud is basically a batch of

computers called data centers or servers that hold

your information (files, images, videos, etc) and

can be located anywhere. You‟re working in a

cloud because you don‟t have to store software

or files on your own computer.To understand it

works, it is important to think of cloud

computing in two levels. The front level is the

user level which is what you use such as your

Google Email or Face book or the webpage

where you are downloading the latest version of

Flash. The other level is the backend which is all

of the hardware and the software architecture.

It‟s here that the actual Gmail or Face book is

held waiting to be accessed by you.Because all of

the different servers are running together in cloud

computing, one application can have the

computer power of many servers. This allows

something like Face book to run. Imagine trying

to host Face book on your laptop. It just wouldn‟t

work.Therefore, the cloud brings together a large

number of computers to operate a single

application.

II. REVIEW OF LITERATURE

Henry C. H. Chen and Patrick P. C. Lee

To protect outsourced data in cloud storage

against corruptions, enabling integrity protection,

fault tolerance, and efficient recovery for cloud

storage becomes critical. Regenerating codes

provide fault tolerance by striping data across

multiple servers, while using less repair traffic

than traditional erasure codes during failure

recovery. Therefore, we study the problem of

remotely checking the integrity of regenerating-

coded data against corruptions under a real-life

cloud storage setting. We design and implement

a practical data integrity protection (DIP) scheme

for a specific regenerating code, while preserving

the intrinsic properties of fault tolerance and

repair traffic saving. Our DIP scheme is designed

under a Byzantine adversarial model, and enables

a client to feasibly verify the integrity of random

subsets of outsourced data against general or

malicious corruptions. It works under the simple

assumption of thin-cloud storage and allows

different parameters to be fine-tuned for the

performance-security trade-off. We implement

and evaluate the overhead of our DIP scheme in

a real cloud storage testbed under different

parameter choices. We demonstrate that remote

integrity checking can be feasibly integrated into

regenerating codes in practical deployment.
Yuchong Hu†, Henry C. H. Chen†,

Patrick P. C. Lee†, Yang TangTo provide fault

tolerance for cloud storage, recent studies

propose to stripe data across multiple cloud

vendors. However, if a cloud suffers from a

permanent failure and loses all its data, then we

need to repair the lost data from other surviving

clouds to preserve data redundancy. We present a

proxy-based system for multiple-cloud storage

called NCCloud, which aims to achieve cost-

effective repair for a permanent single-cloud

failure. NCCloud is built on top of network-

coding-based storage schemes called

regenerating codes. Specifically, we propose an

implementable design for the functional

minimumstorage regenerating code (F-MSR),

which maintains the same data redundancy level

and same storage requirement as in traditional

erasure codes (e.g., RAID-6), but uses less repair

traffic. We implement a proof-of-concept

prototype of NCCloud and deploy it atop local

and commercial clouds. We validate the cost

effectiveness of FMSR in storage repair over

RAID-6, and show that both schemes have

comparable response time performance in normal

cloud storage operations.

Cloud storage provides an on-demand

remote backup solution. However, using a single

cloud storage vendor raises concerns such as

having a single point of failure and vendor lock-

ins. As suggested, a plausible solution is to stripe

data across different cloud vendors. While

striping data with conventional erasure codes

performs well when some clouds experience

short-term failures or foreseeable permanent

failures, there are real-life cases showing that

permanent failures do occur and are not always

foreseeable. This work focuses on unexpected

cloud failures. When a cloud fails permanently, it

is important to activate storage repair to

maintain the level of data redundancy. A repair

operation reads data from existing surviving

clouds and reconstructs the lost data in a new

cloud. It is desirable to reduce the repair traffic,

CLEAR IJRMST Volume-04 Issue-08 Jul-Dec 2014

 Online-ISSN: 2249 -3506

 Print-ISSN: 2249 -3492

 www.thaavan.org

Semi Trusted Proxy To Secure Public Auditing With Network Coding Based

Storage In Multi Storage Cloud Architecture

3

and hence the monetary cost, due to data

migration.

G. Ateniese et al Introduce a model

for provabledata possession (PDP) that allows a

client that has stored data at an untrusted server

to verify that the server possesses the original

data without retrieving it. The model generates

probabilistic proofs of possession by sampling

random sets of blocks from the server, which

drastically reduces I/O costs. The client

maintains a constant amount of metadata to

verify the proof. The challenge/response protocol

transmits a small, constant amount of data, which

minimizes network communication. Thus, the

PDP model for remote data checking supports

large data sets in widely-distributed storage

system.We present two provably-secure PDP

schemes that are more efficient than previous

solutions, even when compared with schemes

that achieve weaker guarantees. In particular, the

overhead at the server is low (or even constant),

as opposed to linear in the size of the data.

Experiments using our implementation verify the

practicality of PDP and reveal that the

performance of PDP is bounded by disk I/O and

not by cryptographic computation.

A. Juels and B. S. Kaliski, Jr Cloud

computing promises In this paper, we define and

explore proofs of retrievability(PORs). A POR

scheme enables an archive or back-up service

(prover) to produce a concise proof that a user

(verifier) can retrieve a target file F, that is, that

the archive retains and reliably transmits file data

sufficient for the user to recover F in its

entirety.A POR may be viewed as a kind of

cryptographic proof of knowledge (POK), but

one specially designed to handle a large file (or

bitstring) F. We explore POR protocols here in

which the communication costs, number of

memory accesses for the prover, and storage

requirements of the user (verifier) are small

parameters essentially independent of the length

of F. In addition to proposing new, practical POR

constructions, we explore implementation

considerations and optimizations that bear on

previously explored, related schemes. In a POR,

unlike a POK, neither the prover nor the verifier

need actually have knowledge of F. PORs give

rise to a new and unusual security definition

whose formulation is another contribution of our

work. We view PORs as an important tool for

semi-trusted online archives. Existing

cryptographic techniques help users ensure the

privacy and integrity of files they retrieve. It is

also natural, however, for users to want to verify

that archives do not delete or modify files prior

to retrieval. The goal of a POR is to accomplish

these checks without users having to download

the files themselves. A POR can also provide

quality-of-service guarantees, i.e., show that a

file is retrievable within a certaintimebound.

C.Wang, Q. Wang, K. Ren, N. Cao, and W. Lou,
Distributed data storage has gained increasing

popularity for efficient and robust data

management in wireless sensor networks

(WSNs). But the distributed architecture also

makes it challenging to build a highly secure and

dependable yet lightweight data storage system.

On the one hand, sensor data are subject to not

only Byzantine failures, but also dynamic

pollution attacks, as along the time the adversary

may modify/pollute the stored data by

compromising individual sensors. On the other

hand, the resource constrained nature of WSNs

precludes the applicability of heavyweight

security designs.

III. RELATED WORKS

The first requirement from our storage

code is the (n, k) property: a code will be storing

information in n storage nodes and should be

able to tolerate any combination of n - k failures

without data loss. We refer to codes that have

this reliability as “(n, k) erasure codes,” or codes

that have “the (n, k) property.” One well-known

class of erasure codes that have this property is

the family of maximum distance separable

(MDS) codes. In short, an MDS code is a way to

take a data object of size M, split it into chunks

of size M/k and create n chunks of the same size

that have the (n, k) property. It can be seen that

MDS codes achieve the (n, k) property with the

minimum storage overhead possible: any k

storage nodes jointly store M bits of useful

information, which is the minimum possible to

guarantee recovery

CLEAR IJRMST Volume-04 Issue-08 Jul-Dec 2014

 Online-ISSN: 2249 -3506

 Print-ISSN: 2249 -3492

 www.thaavan.org

Semi Trusted Proxy To Secure Public Auditing With Network Coding Based

Storage In Multi Storage Cloud Architecture

4

Our second requirement is efficient

exact repair. When one node fails or becomes

unavailable, the stored information should be

easily reconstructable using other surviving

nodes. Simple regenerating codes achieve the (n,

k) property and simple repair simultaneously by

separating the two problems. Large MDS codes

are used to provide reliability against any n-k

failures while very simple XORs applied over the

MDS coded packets provide efficient exact

repair when single node failures happen. File

reconstruction of a (4,2,2)-SRC. We give an

example of a single node repair of the (4; 2; 2)-

SRC. We assume that node 1 is lost and a

newcomer joins the system. To reconstruct x1,

the newcomer has to download y1 and s1 from

nodes 3 and 4. This simple repair scheme is

possible due to the way that we placed the

chunks in the 4 storage nodes: each node stores 3

chunks with different index. The newcomers

reconstructs each lost chunk by downloading,

accessing, and XORing2 other chunks. In this

process the outer MDS codes are not used. The

Repair Node in a(4,2,2)-SRC.

Network coding is a technique which can

be used to improve a network's throughput,

efficiency and scalability, as well as resilience to

attacks and eavesdropping. Instead of simply

relaying the packets of information they receive,

the nodes of a network take several packets and

combine them together for transmission. This can

be used to attain the maximum

possible information flow in a network.

It has been proven that linear coding is

enough to achieve the upper bound in multicast

problems with one or more sources.
[1]

 However

linear coding is not sufficient in general (e.g.

multisource, multisink with arbitrary demands),

even for more general versions of linearity such

as convolutional coding and filter-bank

coding. Finding optimal coding solutions for

general network problems with arbitrary

demands remains an open problem.

In a network coding problem, a group of

nodes are involved in moving the data

from source nodes to sink nodes. Each

node generates new packets which are linear

combinations of earlier received packets,

multiplying them by coefficients chosen from

a finite field, typically of size .Each

node, with in

degree, , generates a

message from the linear combination of

received messages by the relation:

Where the values are the

coefficients selected from . Note that,

since operations are computed in a finite field,

the generated message is of the same length as

the original messages. Each node forwards the

computed value along with the

coefficients, , used in the level, .

Sink nodes receive these network coded

messages, and collect them in a matrix. The

original messages can be recovered by

performing Gaussian elimination on the

matrix. In reduced row echelon form, decoded

packets correspond to the rows of the

form .

Fault tolerance is the property that

enables a system to continue operating properly

in the event of the failure of (or one or more

faults within) some of its components. If its

operating quality decreases at all, the decrease is

proportional to the severity of the failure, as

compared to a naïvely designed system in which

even a small failure can cause total breakdown.

Fault tolerance is particularly sought after

in high-availability or life-critical systems.

A fault-tolerant design enables a system

to continue its intended operation, possibly at a

reduced level, rather than failing completely,

when some part of the system fails. The term is

most commonly used to describe computer

systems designed to continue more or less fully

http://en.wikipedia.org/wiki/Node_(networking)
http://en.wikipedia.org/wiki/Linear_network_coding#cite_note-1

CLEAR IJRMST Volume-04 Issue-08 Jul-Dec 2014

 Online-ISSN: 2249 -3506

 Print-ISSN: 2249 -3492

 www.thaavan.org

Semi Trusted Proxy To Secure Public Auditing With Network Coding Based

Storage In Multi Storage Cloud Architecture

5

operational with, perhaps, a reduction

in throughput or an increase in response time in

the event of some partial failure. That is, the

system as a whole is not stopped due to problems

either in the hardware or the software. An

example in another field is a motor vehicle

designed so it will continue to be drivable if one

of the tires is punctured.

 Recovery from errors in fault-tolerant

systems can be characterized as either roll-

forward or roll-back. When the system detects

that it has made an error, roll-forward recovery

takes the system state at that time and corrects it,

to be able to move forward. Roll-back recovery

reverts the system state back to some earlier,

correct version, for example using check

pointing, and moves forward from there. Roll-

back recovery requires that the operations

between the checkpoint and the detected

erroneous state can be made idempotent. Some

systems make use of both roll-forward and roll-

back recovery for different errors or different

parts of one error.

Within the scope of

an individual system, fault tolerance can be

achieved by anticipating exceptional conditions

and building the system to cope with them, and,

in general, aiming for self-stabilization so that

the system converges towards an error-free state.

However, if the consequences of a system failure

are catastrophic, or the cost of making it

sufficiently reliable is very high, a better solution

may be to use some form of duplication. In any

case, if the consequence of a system failure is so

catastrophic, the system must be able to use

reversion to fall back to a safe mode. This is

similar to roll-back recovery but can be a human

action if humans are present in the loop

IV. PROPOSED WORK

Focus on the integrity verification problem in

regenerating-code-based cloud storage,

especially with the functional repair strategy.The

overhead of using cloud storage should be

minimized as much as possible such that a user

does not need to perform too many operations to

their outsourced data (in additional to retrieving

it).To fully ensure the data integrity and save the

users‟ computation resources as well as online

burden, propose a public auditing scheme for the

regenerating-code-based cloud storage, in which

the integrity checking and regeneration (of failed

data blocks and authenticators) are implemented

by a third-party auditor and a semi-trusted proxy

separately on behalf of the data owner.Fully

Encrypt the coefficients to protect data privacy

against the auditor, which is more lightweight

than applying the proof blind technique in [14]

and [15] and data blind method.This framework

design a homomorphic authenticator based on

BLS signature, which can be generated by a

couple of secret keys and verified publicly.The

coefficients are masked by a PRF

(Pseudorandom Function) during the Setup

phase to avoid leakage of the original data. This

method is lightweight and does not introduce any

computational overhead to the cloud servers or

TPA, Advantage of Improve the flexibility and

efficiency of our auditing scheme; The storage

overhead of servers, the computational overhead

of the data owner and communication overhead

during the audit phase can be effectively

reduced. The details for implementing Co-

Efficient Vector codes in multiple storage node,

to specify three operations for Regeneration

codes on a particular file object: 1) File upload,

2) File download, and 3) Repair. Each node

repository is viewed as a logical storage node.

Our implementation assumes a public cloud

storage interface, such that the storage nodes

(i.e., cloud repositories) only need to support

basic read/write operations.Regeneration code

generate a Co-Efficient encoding process this

entity only supported in proxy based approach,

some time proxy get one time failure and human

attack these time doesn‟t retrieve any data to

destroyed cloud. Another thought to lost above

implementation like data store in multi cloud

scenario for different logic and data separation

process because of data security reason.

Windows Azure is Microsoft's application

platform for the public cloud. You can use this

platform in many different ways. For instance,

you can use Windows Azure to build a web

application that runs and stores its data in

Windows Azure data centers. You can use

Windows Azure just to store data, with the

applications that use this data running on-

CLEAR IJRMST Volume-04 Issue-08 Jul-Dec 2014

 Online-ISSN: 2249 -3506

 Print-ISSN: 2249 -3492

 www.thaavan.org

Semi Trusted Proxy To Secure Public Auditing With Network Coding Based

Storage In Multi Storage Cloud Architecture

6

premises .You can use Windows Azure to create

virtual machines for development and test or to

run SharePoint and other applications. You can

use Windows Azure to build massively scalable

applications with lots and lots of users. Because

the platform offers a wide range of services, all

of these things-and more-are possible.To do any

of them, though, you need to understand the

basics. Even if you don't know anything about

cloud computing, this article will walk you

through the fundamentals of Windows Azure.

The goal is to give you a foundation for

understanding and using this cloud platform.

One of the most common things that people do in

the cloud is run web sites and web applications.

Windows Azure Virtual Machines allows this,

but it still leaves you with the responsibility of

administering one or more VMs. What if you just

want a web site where somebody else takes care

of the administrative work for you?This is

exactly what Windows Azure Web Sites

provides. This execution model offers a managed

web environment using the Windows Azure

Management portal as well as APIs. You can

move an existing web site into Windows Azure

Web Sites unchanged, or you can create a new

one directly in the cloud. Once a web site is

running, you can add or remove instances

dynamically, relying on Windows Azure Web

Sites to load balance requests across them. The

standard option also lets you increase the size

(computing power) of your instances if

needed.Windows Azure Web Sites is intended to

be useful for corporations, developers, and web

design agencies. For corporations, it‟s an easy-

to-manage, scalable, highly secure, and highly

available solution for running presence web sites.

For development, it supports .NET, PHP,

Node.js, and Python along with SQL Database

and MySQL (from ClearDB, a Microsoft partner)

for relational storage. It also provides built-in

support for several popular applications,

including WordPress, Joomla, and Drupal. The

goal is to provide a low-cost, scalable, and

broadly useful platform for creating web sites

and web applications in the public cloud.

1) Architecture Diagram

Figure 1 Architecture diagram

2)System Modules

The system comprises of the following modules

which include,

1. Setup Creation Module

2. File Upload Module

3.Public Auditing Module

4.Storage Node Re-Generate Module

.

1.Setup Creation Module

The Setup creation module fully worked on data

owner side and maintains this procedure to

initialize the auditing scheme.

KeyGen(1κ)→ (pk, sk): This polynomial-time

algorithm is run by the data owner to initialize its

public and secret parameters by taking a security

parameter κ as input.

Degelation(sk) → (x): This algorithm represents

the interaction between the data owner and

proxy. The data owner delivers partial secret key

x to the proxy through a secure approach.

SigAndBlockGen(sk, F) → (ᶲ,ᴪ, t): This

polynomial time algorithm is run by the data

owner and takes the secret parameter skand the

original file F as input, and then outputs a coded

block set , an authenticator set and a file tag t.

 2. File Upload Module

The file F is split into m blocks, and the original

m s-dimensional vectors each original block 𝑤𝑖is

appended with the vector of length m containing

CLEAR IJRMST Volume-04 Issue-08 Jul-Dec 2014

 Online-ISSN: 2249 -3506

 Print-ISSN: 2249 -3492

 www.thaavan.org

Semi Trusted Proxy To Secure Public Auditing With Network Coding Based

Storage In Multi Storage Cloud Architecture

7

a single „1‟ in the ith position and is otherwise

zero.

Then, the augmented vectors are encoded into

coded blocks. Specifically, they are linearly

combined and generate coded blocks with

randomly chosen coefficients vector.

Original encoded files upload into several

storage node and coefficient vector has been

stored into proxy server. The data server doesn‟t

response that time will check vector and

regenerate the missing data into new storage.

.

3.Public Auditing

The cloud servers and TPA interact with one

another to take a random sample on the blocks

and check the data intactness in this procedure.

Challenge(Fin f o) → (C): This algorithm is

performed by the TPA with the information of

the file Fin f o as input and a challenge C as

output.

Proof Gen(C,ᶲ,ᴪ)→(P): This algorithm is run by

each cloud server with input challenge C, coded

block set and authenticator set , then it

outputs a proof P.

Veri f y(P, pk, C)→ (0, 1): This algorithm is run

by TPA immediately after a proof is received.

Taking the proof P, public parameter pkand the

corresponding challenge C as input, it outputs 1

if the verification passed and 0 otherwise.

4.Storage Node Re-Generate Module

In the absence of the data owner, the

proxy interacts with the cloud servers during this

procedure to repair the wrong server detected by

the auditing process.

ClaimForRep(Fin f o) → (Cr): This

algorithm is similar with the Challenge()

algorithm in the Audit phase, but outputs a claim

for repair Cr .

GenForRep(Cr,ᶲ,ᴪ) → (BA): The cloud

servers run this algorithm upon receiving the Cr

and finally output the block and authenticators

set BA with another two inputs ,.

BlockAndSigReGen(Cr , BA) →

(ᶲ
’
,ᴪ

’
,⊥): The proxy implements this algorithm

with the claim Cr and responses BA from each

server as input, and outputs a new coded block

set ᴪ
’
and authenticator set ᶲ

’
if successful,

outputting ⊥if otherwise.

V. CONCLUSION

A public auditing scheme for the

regenerating-code-based cloud storage system,

where the data owners are privileged to delegate

TPA for their data validity checking. To protect

the original data privacy against the TPA, we

randomize the coefficients in the beginning

rather than applying the blind technique during

the auditing process. Considering that the data

owner cannot always stay online in practise, in

order to keep the storage available and verifiable

after a malicious corruption, we introduce a

semi-trusted proxy into the system model and

provide a privilege for the proxy to handle the

reparation of the coded blocks and

authenticators. To better appropriate for the

regenerating-code-scenario, we design our

authenticator based on the BLSsignature

CLEAR IJRMST Volume-04 Issue-08 Jul-Dec 2014

 Online-ISSN: 2249 -3506

 Print-ISSN: 2249 -3492

 www.thaavan.org

Semi Trusted Proxy To Secure Public Auditing With Network Coding Based

Storage In Multi Storage Cloud Architecture

8

VI FUTUREENHANCEMENT

To collect information from any remote

location in the absence of network connectivity

and to recover the files in case of the file deletion

or if the cloud gets destroyed due to any

reason.Client creates the file in cloud first time, it

is stored at the main cloud. When it is stored in

main server, the main file of client is being

EXORed with the Seed Block of the particular

client. And that EXORed file is stored at the

remote server in the form of file‟. If either

unfortunately file in main cloud crashed /

damaged or file is been deleted mistakenly, then

the user will get the original file by EXORing

file‟ with the seed block of the corresponding

client to produce the original file and return the

resulted file i.e. original file back to the

requested client.

REFERENCES

[1] M. Armbrustet al., “Above the clouds: A

Berkeley view of cloud computing,” Dept. Elect.

Eng. Comput.Sci., Univ. California, Berkeley,

CA, USA, Tech. Rep. UCB/EECS-2009-28,

2009.

[2] G. Atenieseet al., “Provable data possession

at untrusted stores,” in Proc. 14th ACM Conf.

Comput. Commun.Secur.(CCS), New York, NY,

USA, 2007, pp. 598–609.

[3] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs

of retrievability for large files,” in Proc. 14th

ACM Conf. Comput. Commun.Secur., 2007, pp.

584–597.

[4] R. Curtmola, O. Khan, R. Burns, and G.

Ateniese, “MR-PDP: Multiple-replica provable

data possession,” in Proc. 28th Int. Conf. Distrib.

Comput. Syst. (ICDCS), Jun. 2008, pp. 411–420.

[5] K. D. Bowers, A. Juels, and A. Oprea,

“HAIL: A high-availability and integrity layer

for cloud storage,” in Proc. 16th ACM Conf.

Comput. Commun.Secur., 2009, pp. 187–198.

[6] J. He, Y. Zhang, G. Huang, Y. Shi, and J.

Cao, “Distributed data possession checking for

securing multiple replicas in

geographicallydispersed clouds,” J. Comput.

Syst. Sci., vol. 78, no. 5, pp. 1345–1358, 2012.

[7] B. Chen, R. Curtmola, G. Ateniese, and R.

Burns, “Remote data checking for network

coding-based distributed storage systems,” in

Proc. ACM Workshop Cloud Comput. Secur.

Workshop, 2010, pp. 31–42.

[8] H. C. H. Chen and P. P. C. Lee, “Enabling

data integrity protection in regenerating-coding-

based cloud storage: Theory and

implementation,” IEEE Trans. Parallel Distrib.

Syst., vol. 25, no. 2, pp. 407–416, Feb. 2014.

[9] K. Yang and X. Jia, “An efficient and secure

dynamic auditing protocol for data storage in

cloud computing,” IEEE Trans. Parallel Distrib.

Syst., vol. 24, no. 9, pp. 1717–1726, Sep. 2013.

[10] Y. Zhu, H. Hu, G.-J.Ahn, and M. Yu,

“Cooperative provable data possession for

integrity verification in multicloud storage,”

IEEE Trans. Parallel Distrib. Syst., vol. 23, no.

12, pp. 2231–2244, Dec. 2012.

